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Quantization of Discretized Spacetimes and the
Correspondence Principle
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An algebraic quantization procedure for discretized spacetime models is suggested
based on the duality between finitary substitutes and their incidence algebras.
The provided limiting procedure that yields conventional manifold characteristics
of spacetime structures is interpreted in the quantum algebraic framework as a
correspondence principle.

MOTIVATION

Current physical theory predicts that at small scales the conventional
picture of spacetime as a 4-dimensional differential manifold breaks down
to something more discrete, finitary, and quantum. This inadequacy of the
smooth spacetime manifold is due on one hand to the ideal character of
event determinations of a classical observer, on the other to the appearance
of singularities.

To deal with the first shortcoming of the manifold model, we insist that
realistic models of measurement should be pragmatic: we actually perform
a finite number of observations and record a finite number of events. Thus, the
conventional infinitude of events that we adopt to model classical spacetime
structure seems to be a gross generalization of little operational value: we have
no actual experience of a continuous infinity of events and their infinitesimal
differential separation cannot be recorded in the laboratory.

However, due to the success of the classical model of observation at
large scales one expects a connection between the realistic models and their
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ideal counterpart. The anticipated connection could be formulated in terms
of a correspondence principle. That is to say, the structure of ideal observations
arises in some kind of limit of the structures of pragmatic measurements.
The aim of this paper is to provide a physical account for this correspondence.

The central object of the correspondence will be the classical event
living in the limit manifold. This is modeled by a point there and a classical
observer records no quantum interference of events. But in the pragmatic
regime we interpret the event as a pure state of spacetime and we admit
coherent quantum superposition between events. In this sense the quantum
substratum of pragmatic events ‘decoheres’ to the classical point event of
the limit manifold and the physical meaning of the correspondence principle
is the usual quantum one due to Bohr.

We use the finitary substitutes proposed by Sorkin (1991) to model
combinatorial relations between events in realistic measurements. The inci-
dence algebras due to Rota (1968) are employed to accomplish the same
thing, but operationally, that is, algebraically. There is a duality implicit here
that is related to familiar notions about the duality of quantum dynamics. In
our treatment the Sorkin model is held to represent an evolution of states
much like the Schrödinger picture of quantum systems, while the Rota model
recalls the evolution of operators similar to the Heisenberg picture. Our
approach lies with the latter picture, although one is always able to switch
back to the Sorkin scheme (Zapatrin, 1998). In brief, we propose that posets
describe the dynamical evolution of events when the algebras describe the
dynamical evolution of event determinations (operations).

Our algebraic approach is constructive, that is, we provide a matrix
representation for the algebras employed. The latter possess preferred ele-
ments that represent the pragmatic observations that in the ideal limit are
expected to yield the irreducible elements of classical observations: the mani-
fold point events. They constitute abelian subalgebras of the incidence alge-
bras and are coined stationaries. Of course, actual pragmatic observations are
expected to effect dynamical transitions between quantum states of spacetime
(stationaries). These are modeled by noncommuting operations in the algebra
of pragmatic events and are called transients. We anticipate that stationaries
will correspond to classical point events in the limit manifold (in Section 5
we show how sequences of stationaries become stationery recording classical
events), while transients correspond to some kind of tangent structure at
an event.

To deal with the second shortcoming of the manifold model we note
that at the pragmatic level of observations there are no points, but only
algebras. We call this feature alocality. Nevertheless, we require the classical
correspondence limit to yield the familiar local structure of spacetime: the
point event and the space tangent to it. Since any point of the limit manifold
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can be the host of a singularity of some important physical field, the alocal
quantum pragmatic substratum may prove to be an effective resolution of
spacetime into finite quantum elements. The quantum substratum is asingular
(finite) because alocal. Thus, from our perspective, locality, that is, the
assumption of a differential continuum for spacetime (Einstein, 1924), is the
prime reason for singularities, so that at the pragmatic level of observation
we abandon it. We suggest a plausible quantum theory of spacetime structure
with a strong operational and finitistic character. Then, based on the algebraic
models of pragmatic observations we may develop a noncommmutive differ-
ential geometry to erect a quantum theory of gravity on it (Parfionov and
Zapatrin, 1995). The correspondence limit suggested in the present paper
may also be employed in this context to recover the classical algebra of
spacetime observables and the conventional differential geometry of the
spacetime manifold (used to describe general relativity) from the pragmatic
noncommutative quantum substratum.

It should be mentioned that our algebraic approach is rather flexible in
the following sense: alternatively to the novel notion of alocality in the
pragmatic regime we can formulate the notion of nearest neighbor connec-
tions. The latter was assumed by Finkelstein (1985) to be the principal
characteristic of the physical causal topology in the quantum deep so as to
localize in some sense a causality relation between events (Bombelli et al.,
1987). This causality relation was modeled by a partial order. Thus, if we
physically interpret Sorkin’s finitary substitutes as causal sets (Sorkin, 1995),
a recent result (Zapatrin, 1998) allows us to represent the ‘nearest neighbor’
causal connection between events algebraically in the pragmatic regime and
thus vindicate Finkelstein’s demand for an algebraic representation of immedi-
ate causality (Finkelstein, 1985). There, in turn, we have the advantage of
interpreting this connection operationally and studying its quantum properties.
The question we are confronted with is, What is the physical meaning in the
pragmatic algebraic regime of the Sorkin–Finkelstein local causality? As an
answer we expect a formulation of local causality in operational terms with
a quantum interpretation, something that is missing in Sorkin’s picture, which
is dual to ours. Affine to this question is the following one: How can our
pragmatic event determinations accord with and be adequate models of the
causal structure of the world at small scales?

Finally, inspired by the Sorkin (1991) approach, we contend that prag-
matic measurements can be subjected to refinements. In passing to the dual
picture we deal with algebras and, in accordance with the correspondence
limit, the ideal ultimate refinement corresponds to what is known as the
algebra of classical observables (coordinates) and the manifold supporting
them.
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1. FINITARY PRELIMINARIES

A finitary topological space is defined in Sorkin (1991) as a space with
any bounded region in it consisting of a finite number of points. This seems
to be a reasonable model for actual measurements involving a finite number
of events during experiments of finite spatiotemporal extent.

Any finitary topological space } can be equivalently pictured as poset.
Introduce the relation “→” between points of }

p → q ⇔ the constant sequence {p, p, . . . , p, . . . } tends to q

using the standard definition of convergence: a sequence {p1, p2, . . . } → q
iff for any open set U containing q there is a number NU such that pn P U
for any n $ NU.

The obtained relation “→” is always reflexive ( p → p) and transitive
( p → q, q → r imply p → r). Vice versa, any quasiordered set (}, →)
acquires a topology defined through the closure operator on subsets P # M:

ClP 5 {q: ∃p P P p → q}

For technical reasons (see Section 2) we employ the Alexandrov (1956)
construction of nerves to substitute the continuous topology. Recall that the
nerve _ of a covering 8 of a manifold } is the simplicial complex whose
vertices are the elements of 8 and whose simplices are formed according to
the following rule. A set of vertices (that is, elements of the covering) {U0,
. . . , Uk} form a k-simplex of _ if and only if they have nonempty intersection:

{U0, . . . , Uk} P _ ⇔ U0 ùU1 ù . . . ù Uk Þ 0⁄

Any nerve _ being a complex can be as well treated as a poset, denoted
also by _. The points of the poset _ are the simplices of the complex _,
and the arrows are drawn according to the rule

p → q ⇔ p is a face of q

In the nondegenerate cases the posets associated with nerves and those
produced by Sorkin’s (1991) ‘equivalence algorithm’ are the same. We choose
nerves because their specific algebraic structure makes it possible to build
the dual algebraic theory.

2. INCIDENCE ALGEBRAS

The notion of incidence algebra of a poset was introduced by Rota
(1968) in a purely combinatorial context. Let P be a poset. Consider the set
of formal symbols .p&^q. for all p, q P P such that p # q and its linear span
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V 5 span{.p&^q.}p#q (1)

and endow it with the operation of multiplication

.p&^q. ? .r&^s. 5 .p&^q.r&^s. 5 ^q.r& ? .p&^s. 5 H.p&^s. if q 5 r
0 otherwise

(2)

The correctness of this definition of the product, that is, the existence
of .p&^s. when q 5 r, is due to the transitivity of the partial order. The obtained
algebra V with the product (2) is called incidence algebra of the poset P.

The incidence algebra V is obviously associative, but not commutative
in general. Namely, it is commutative if and only if the poset P contains
no arrows.

Let us split V into two subspaces

V 5 ! % 5

where

! 5 span{.p&^p.}pPP (3)

and call

5 5 span{.p&^q.}p,q

the module of differentials of the poset P. It is a fact that 5 is a bimodule
over !.

As we refine the poset, the limit space is intended to be a manifold.
The incidence algebras are dual objects to posets, therefore their behavior
should be similar to that of differential forms in classical geometry. The
algebra ! is intended to play the role of classical coordinates, while 5 should
be graded, being an analogue of the module of differential forms.

For this aim we consider only simplicial complexes, which are treated
as posets. p # q means that p is a face of q. The elements of simplicial
complexes are naturally graded. Then any basic element .p&^q. of the incidence
algebra V acquires a degree that is the difference of the degrees of its
constituents:

deg.p&^q. 5 the difference of cardinalities of p and q (4)

splitting V into linear subspaces

V 5 V0 % V1 % . . . (5)

with

V0 5 span{.p&^p.} 5 !

. . .
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Vn 5 span{.p&^q.}deg.p&^q.5n

. . .

making V a graded algebra:

∀v P Vm, v8 P Vn, vv8 P Vm1n

and therefore making the module of differentials 5 a graded !-bimodule:

_ 5 V1 % V2 % . . .

This grading makes the incidence algebras discrete differential manifolds
(Dimakis and Müller-Hoissen, 1999) as they posssess both commutative
scalars (the subalgebra !) and differentials over it (the module 5). For a
more detailed account the reader is referred to Breslav and Zapatrin (1999).

3. ROTA TOPOLOGY AND THE DUALITY

In this section we establish a duality between a certain class of finitary
substitutes and their incidence algebras. We select this class in such a way
that canonical mappings between the points admit conjugate homomorphisms
of incidence algebras making the correspondence between posets and alge-
bras functorial.

As it was shown in the previous section, its noncommutative incidence
algebra can be associated with any poset. It was proved by Stanley (1968)
that if two posets have isomorphic incidence algebras, then they are isomor-
phic. The reverse procedure building a poset P(V) from an arbitrary finite-
dimensional algebra V was suggested in Zapatrin (1998). Let us briefly
describe the construction.

The elements of the poset P(V) are the irreducible representations of
the algebra V . Building the partial order on P(V) cosists of two steps. First,
the nearest neighbor connections p → q are built according to the following
rule: let p, q be two irreducible representations of V; denote by p0, q0

their kernels:

p0 5 p21 (0); q0 5 q21(0)

which are ideals in V . Then define the nearest neighbors p → q:

p → q ⇔ p0q0 Þ p0 ù q0 (6)

where the left-hand side p0q0 is understood as the product of subsets of V .
The resulting partial order on the set P(V) is obtained as the transitive closure
of the relation (6). The topology associated with this partial order is referred
to as Rota topology.
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When the algebra V is commutative, the Rota topology is discrete (no
linked pairs p → q). The obtained topology becomes nontrivial only when
V is noncommutative.

Remark. When all irreducible representations of V are one-dimensional
we can build two topologies on the set P(V), the Gel’fand and Rota ones,
and it is interesting to compare them. The result is the following: the Gel’fand
topology is always discrete, while the Rota topology may be nontrivial.

The possibility of mutual transitions between between finitary topologi-
cal spaces and algebras is based on the following theorem (Zapatrin, 1998):

If the algebra V is the incidence algebra V(P) of a poset P, then the
resulting poset is isomorphic to P:

P . P(V(P))

As mentioned above, Stanley’s (1968) theorem claims that

V(P) . V(Q) ⇔ P . Q

and one could expect that a poset homomorphism, that is, a continuous
mapping of appropriate finitary topological spaces, should give rise to a
homomorphism of their incidence algebras. Alas, this is not the case for
general posets.

To gather functoriality we have to restrict somehow the class of posets
we are dealing with and the mappings between them. We did this already in
the previous section in order to make the incidence algebras graded. Namely,
we restricted ourselves to simplicial complexes. To make incidence algebras
dual objects, following Alesandrov (1956), we restrict the mappings between
simplicial complexes to simplicial mappings only. Recall that a mapping v:
_a → _a8 between two simplicial complexes _a and _a8 is said to be
simplicial if :

• The v-image of any vertex in _a is a vertex in _a8

v(_0
a) # _0

a8 (7)

• v is completely defined by its values on the vertices of _a.
• v preserves simplices.

Under this condition the correspondence between posets and their inci-
dence algebras becomes functorial. With any v: _a → _a8 its adjoint v*:
V(_a8) → V(_a) is defined in the following way. Let .P&^Q. be a basic
element of V(_a8). Then Q may be represented as a disjoint sum Q 5 P 1
S and we put

v*(.P&^Q.) 5 ({.p&^q.: v( p) 5 P; q 5 p 1 s, v(s) 5 S} (8)
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The direct verification shows that the so-defined v* is always a homo-
morphism of the incidence algebras. As a result, we have the duality between
simplicial complexes and their incidence algebras: if v is surjective, its adjoint
v* is injective and vice versa.

4. PHYSICAL INTERPRETATION OF INCIDENCE ALGEBRAS

The differential manifold model of spacetime is an ill-founded assump-
tion and a gross generalization of what we actually experience as spacetime.
It is essentially based on the nonoperational supposition that we can pack an
infinity of events in an infinitesimal spacetime volume element when, in fact,
we only record a finite number of them during experiments of finite duration
in laboratories of finite size. It is exactly due to this trait of the manifold
model that at small scales our theories of quantum spacetime structure and
dynamics are plagued by nonrenormalizable infinities of the values of many
important physical fields. On the other hand, the requirement that the laws
of nature are local almost mandates the assumption of smoothness for space-
time and we seem to get back to square one. However, the success the
manifold has enjoyed in picturing the local dynamics of matter should not
mask the unphysicality of its character, especially at small scales. In particular,
quantum theory, when applied to investigate the structure and dynamics of
spacetime in the small, is simply incompatible with a classical, nonoperational
ideal of a continuous infinity of events labeled by commutative coordinates.
Pragmatic measurements of quantum spacetime are finite and inevitably
induce uncontrollable dynamical perturbations to it. Thus, the requirement
for operationality and finiteness as well as the success that a quantum theory
of matter has had when formulated algebraically motivate us to formulate
an algebraic theory of pragmatic finite measurements of spacetime at quan-
tum scales.

The local structure of the differential manifold is the point event and
its infinitesimal differential neighbors in the tangent space. As mentioned
above, this classical geometric structure serves us well in casting dynamical
laws as differential equations (classical locality), but is rather inadequate for
picturing actual quantum spacetime measurements that are finite, hence free
from infinities (singularities). Especially in the quantum deep this classical
conception of locality cannot survive. We propose to revise it by substituting
the geometrical point events and the space of directions tangent to them by
finitely generated algebras affording a cogent quantum spacetime interpreta-
tion for their structure. In this sense our scheme is alocal and finitary and
more likely to evade the infinities of the differential manifold. Of course, the
‘naturalness’ of our substituting quantum alocality for the classical differential
locality will be vindicated if we are able to recover the limit manifold
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with its classical observables and differential structure by some kind of
correspondence principle applied to the alocal algebras of pragmatic measure-
ments. We carry this out in Section 5.

We give the following physical meaning to the elements of V in (3):

1. ! constitutes the space of stationaries. The latter can be thought of
as elementary acts of determination of the pure states of quantum spacetime.
We interpret them as quantum spacetime events. The algebraic connective
‘1’ between them is interpreted as coherent superposition between quantum
events. The commutativity of stationaries foreshadows the compatibility of
the determinations of the coordinates of events in the classical manifold
regime (Section 5). In the dual (poset) picture the sationaries correspond to
self-incidences p → p.

2. V1 constitutes the space of transients. These can be thought of as
elementary quantum dynamical processes between stationaries; thus they
represent discrete one-step transitions between quantum spacetime events.
Transients do not commute with each other and this foreshadows the Lie
structure of covectors in the limit space.

3. Vi (i $ 2) constitute the spaces of paths which are thought of as
composites of transients. If we associate with a transient a quantum of an
additive physical quantity like energy (or its dual time), then the total grade
of the appropriate element of the algebra corresponds to the total energy
associated with it (or to the duration of the whole transition process).

In the Motivation we alluded to the Sorkin poset scheme as being an
analog of the Schrödinger picture of quantum dynamics, while our algebraic
approach is the simile of the Heisenberg picture: this is based on the duality
of the two approaches (Section 3). In an analogous way quantum states are
the linear duals of the operators in the conventional algebraic approach to
quantum mechanics.

Here, too, any finitary substitute is associated with an incidence algebra
in such a way that the topology of the poset is the same as that encoded in
the algebra. This resembles the fact that the Schrödinger and the Heisenberg
pictures encode the same information about quantum dynamics. Furthermore,
the arrows between point events in the Sorkin scheme can be thought of as
the directed dynamical transitions of spacetime event-states, while in our
picture such dynamical connections are between pragmatic operations. The
topology in both schemes is physically interpreted as dynamical connections
between events although our picture, being algebraic, naturally affords a
quantum interpretation.
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5. LIMITING PROCEDURE AND THE CORRESPONDENCE
PRINCIPLE

When spacetimes are subsituted by finitary topological spaces, we may
consider finer or coarser experiments. That is why we have to formalize the
notion of refined experiment. Within the Sorkin discretization procedure
(Section 1) a refinement means passing to an inscribed covering of the
manifold. In this case any element of the finer covering is contained in an
element of the coarser one. Since we are dealing with nerves and simplicial
mappings between them we have to take care of the condition (7). Recall
that a vertex of the nerve is associated with an element of the covering. In
general it may happen that a small region of the fine covering can belong
to two elements of a coarser one. So for any element of the fine covering
we have to keep track of its origin in order for (7) to hold.

Each step of a limiting procedure, that is, a refined covering, gives rise
to a projection of appropriate complexes: the finer one is projected to the
coarser one. In the dual framework we have an injection of the smaller algebra
associated with a coarser measurement to the bigger one.

In general, limiting procedures for approximating systems (whatever
they be, posets or algebras) are organized using the notion of converging
nets. Namely, each pragmatic observation is labeled by an index a and we
have the relation of refinement s on observations: a s a8 means that the
observation a is a refinement of a8.

When we are dealing with posets with each pair a, a8 such that a s
a8 a canonical projection va

a8: _a → _a8 is defined such that for any a s
a8 s a9

va
a9 5 va8

a9va
a8

and we introduce the set of threads. A thread is a collection {ta} of elements
ta P _a such that

ta 5 va8
a ta8

whenever a s a8. Denote by T the set of all threads.
The next step is to make T a topological space, which is done in a standard

way (Aleksandrov, 1956): T is a subspace of the total Cartesian product

T0 5 xa_a

while each of _a is a topological space. Endow T0 with the product Tikhonov
topology, then T, being a subset of T0, becomes topological space. Finally
we obtain the limit space X as the collection of all closed threads from T.
This procedure is described in detail in Sorkin (1991).
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The scheme for building limit algebras is exposed in Landi and Lizzi
(1999). As mentioned above, with any pair a s a8 of pragmatic observations
we have a canonical injection

v*a8
a : V(_a8) → V(_a)

Moreover, due to the requirement (7) the restriction of each v* on
commutative subalgebras ! 5 V0 # V is well defined. Now we first consider
the set of all sequences

V 5 xaV(_a) 5 {{aa}.aa P V(_a)}

and select the set of converging sequences in the following way. Note that
! is an algebra. Introduce a norm |?|a in each finite-dimensional algebra
V(_a); then a sequence {aa} converges if and only if for any e . 0 there
exists a filter ^e of indices a such that

∀a, a8 P ^e a s a8 ⇒ |v*a
a aa 2 aa8|a8 , e

Since any element of the limit algebra is a net we may consider the
coupling between the limit algebra and the limit space which consists of nets.
The result of this coupling is a converging net of numbers whose limit is
thought of as the value of an element of the limit algebra at a point of the
limit space.

The Sorkin scheme recovers the manifold in the limit of refinements of
finitary posets. Our dual picture aspires to the same in the limit of resolution
of pragmatic event determinations. Since our algebraic scheme affords a
quantum spacetime interpretation, this limit can be thought of as a correspon-
dence principle linking the finitary quantum spacetime substrata with the
smooth classical spacetime manifold. The alocal, algebraic quantum space-
time determinations of the substrata converge to the local geometric spacetime
point and its cotangent space. This is to be contrasted, for instance, with the
Bombelli et al. (1987) causal set scenario where the limiting procedure may
be thought of as a ‘random sprinkling’ of events according to some appropriate
distribution, so that the ‘limit spacetime manifold,’ with its topological,
differential, and Lorentz-causal structure, arises as a statistical average of
causal sets, and thus is essentially of thermodynamic nature.

On the other hand, our correspondence limit is well-defined in the
quantum (rather than statistical) sense like the well-known correspondence
principle: the pragmatic quantum stationaries decohere to the point events
of the limit manifold, and the noncommuting transients to covectors.

6. CONCLUDING REMARKS

In the present paper we gave a quantum spacetime interpretation to the
incidence algebras induced by posets, which, in turn, correspond to finitary
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topological spaces. Sorkin’s limit for recovering the manifold as a maximal
refinement of finitary posets is cast here as Bohr’s correspondence principle.
Still, due to the implausibility of any notion of preexisting space in the
quantum dynamical deep, we would rather give a more physical, causal, or
temporal interpretation to the posets’ partial order (Sorkin, 1995), so that we
can link our algebraic scheme with Bombelli et al.’s (1987) causal set approach
to quantum gravity. Our quantum interpretation of the incidence algebras
induced by causal sets is a first step at yet another attempt at quantizing
causality (Finkelstein, 1969). A previous result of Zapatrin (1998) and Fin-
kelstein’s (1985) claim that immediate causal links between events represent
the physical causal topology motivated us to try to link the present work
with causal sets. This project, however, is still at its birth.
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Einstein, A. (1924). Über den Äther, Schweizerische naturforschende Gesellschaft Verhan-

flungen, 105, 85–93 [English translation, On the ether, in The Philosophy of Vacuum, S.
Saunders and H. Brown, eds., Oxford University Press, Oxford (1991), pp. 13–20].

Finkelstein, D. (1969). Space-time code, Physical Review, 184, 1261.
Finkelstein, D. (1985). Superconducting causal nets, International Journal of Theoretical Phys-

ics, 27, 473.
Landi, G., and Lizzi, F. (1999). Projective systems of noncommutative lattices as a pregeometric

substratum, in Quantum Groups and Fundamental Physical Applications, D. Kastler and
M. Rosso, eds., Nova Science.

Parfionov, G. N., and Zapatrin R. R. (1995). Pointless spaces in general relativity, International
Journal of Theoretical Physics, 34, 737.

Rota, G.-C. (1968). On the foundation of combinatorial theory, I. The theory of Möbius
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